248 research outputs found

    Effect of spatial resolution on apparent sensitivity to initial conditions of a decaying flow as it becomes turbulent

    Get PDF
    Grids with 32(exp 3), 64(exp 3), and 128(exp 3) points are used in numerical solutions for a decaying flow. The sensitivity of initially neighboring solutions to small changes in initial conditions increases as the spatial resolution improves. A fourth-order finite-difference method is used for the solutions with 32(exp 3) and 64(exp 3) grid points, and a pseudospectral method is used for 128(exp 3) grid points. The latter solutions appear to be rather well-resolved, in spite of the formation of steep velocity gradients in the flow

    Confinement effects in a guided-wave interferometer with millimeter-scale arm separation

    Full text link
    Guided-wave atom interferometers measure interference effects using atoms held in a confining potential. In one common implementation, the confinement is primarily two-dimensional, and the atoms move along the nearly free dimension under the influence of an off-resonant standing wave laser beam. In this configuration, residual confinement along the nominally free axis can introduce a phase gradient to the atoms that limits the arm separation of the interferometer. We experimentally investigate this effect in detail, and show that it can be alleviated by having the atoms undergo a more symmetric motion in the guide. This can be achieved by either using additional laser pulses or by allowing the atoms to freely oscillate in the potential. Using these techniques, we demonstrate interferometer measurement times up to 72 ms and arm separations up to 0.42 mm with a well controlled phase, or times of 0.91 s and separations of 1.7 mm with an uncontrolled phase.Comment: 14 pages, 6 figure

    A Bose-Einstein condensate interferometer with macroscopic arm separation

    Full text link
    A Michelson interferometer using Bose-Einstein condensates is demonstrated with coherence times of up to 44 ms and arm separations up to 0.18 mm. This arm separation is larger than that observed for any previous atom interferometer. The device uses atoms weakly confined in a magnetic guide and the atomic motion is controlled using Bragg interactions with an off-resonant standing wave laser beam.Comment: 4 pages, 3 figure

    A Time-Orbiting Potential Trap for Bose-Einstein Condensate Interferometry

    Full text link
    We describe a novel atom trap for Bose-Einstein condensates of 87Rb to be used in atom interferometry experiments. The trap is based on a time-orbiting potential waveguide. It supports the atoms against gravity while providing weak confinement to minimize interaction effects. We observe harmonic oscillation frequencies omega_x, omega_y, omega_z as low as 2 pi times (6.0,1.2,3.3) Hz. Up to 2 times 10^4 condensate atoms have been loaded into the trap, at estimated temperatures as low as 850 pK. We anticipate that interferometer measurement times of 1 s or more should be achievable in this device.Comment: 9 pages, 3 figure

    N-tree approximation for the largest Lyapunov exponent of a coupled-map lattice

    Full text link
    The N-tree approximation scheme, introduced in the context of random directed polymers, is here applied to the computation of the maximum Lyapunov exponent in a coupled map lattice. We discuss both an exact implementation for small tree-depth nn and a numerical implementation for larger nns. We find that the phase-transition predicted by the mean field approach shifts towards larger values of the coupling parameter when the depth nn is increased. We conjecture that the transition eventually disappears.Comment: RevTeX, 15 pages,5 figure

    Measurement of the ac Stark shift with a guided matter-wave interferometer

    Full text link
    We demonstrate the effectiveness of a guided-wave Bose-Einstein condensate interferometer for practical measurements. Taking advantage of the large arm separations obtainable in our interferometer, the energy levels of the 87Rb atoms in one arm of the interferometer are shifted by a calibrated laser beam. The resulting phase shifts are used to determine the ac polarizability at a range of frequencies near and at the atomic resonance. The measured values are in good agreement with theoretical expectations. However, we observe a broadening of the transition near the resonance, an indication of collective light scattering effects. This nonlinearity may prove useful for the production and control of squeezed quantum states.Comment: 5 pages, three figure

    Observation of subdiffusion of a disordered interacting system

    Full text link
    We study the transport dynamics of matter-waves in the presence of disorder and nonlinearity. An atomic Bose-Einstein condensate that is localized in a quasiperiodic lattice in the absence of atom-atom interaction shows instead a slow expansion with a subdiffusive behavior when a controlled repulsive interaction is added. The measured features of the subdiffusion are compared to numerical simulations and a heuristic model. The observations confirm the nature of subdiffusion as interaction-assisted hopping between localized states and highlight a role of the spatial correlation of the disorder.Comment: 8 pages, to be published on Physical Review Letter

    Quantum diffusion with disorder, noise and interaction

    Get PDF
    Disorder, noise and interaction play a crucial role in the transport properties of real systems, but they are typically hard to control and study both theoretically and experimentally, especially in the quantum case. Here we explore a paradigmatic problem, the diffusion of a wavepacket, by employing ultra-cold atoms in a disordered lattice with controlled noise and tunable interaction. The presence of disorder leads to Anderson localization, while both interaction and noise tend to suppress localization and restore transport, although with completely different mechanisms. When only noise or interaction are present we observe a diffusion dynamics that can be explained by existing microscopic models. When noise and interaction are combined, we observe instead a complex anomalous diffusion. By combining experimental measurements with numerical simulations, we show that such anomalous behavior can be modeled with a generalized diffusion equation, in which the noise- and interaction-induced diffusions enter in an additive manner. Our study reveals also a more complex interplay between the two diffusion mechanisms in regimes of strong interaction or narrowband noise.Comment: 11 pages, 10 figure
    corecore